Multiplicative Lévy processes: Itô versus Stratonovich interpretation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise.

We consider the dynamics of systems in the presence of inertia and colored multiplicative noise. We study the limit where the particle relaxation time and the correlation time of the noise both tend to zero. We show that the limiting equation for the particle position depends on the magnitude of the particle relaxation time relative to the noise correlation time. In particular, the limiting equ...

متن کامل

Itô versus Stratonovich calculus in random population growth.

The context is the general stochastic differential equation (SDE) model dN/dt=N(g(N)+sigmaepsilon(t)) for population growth in a randomly fluctuating environment. Here, N=N(t) is the population size at time t, g(N) is the 'average' per capita growth rate (we work with a general almost arbitrary function g), and sigmaepsilon(t) is the effect of environmental fluctuations (sigma>0, epsilon(t) sta...

متن کامل

Singular Stochastic Control and Optimal Stopping with Partial Information of Itô-Lévy Processes

Abstract. We study partial information, possibly non-Markovian, singular stochastic control of Itô–Lévy processes and obtain general maximum principles. The results are used to find connections between singular stochastic control, reflected backward stochastic differential equations, and optimal stopping in the partial information case. As an application we give an explicit solution to a class ...

متن کامل

Beyond Itô versus Stratonovich

Recently, a novel framework to handle stochastic processes has emerged from a series of studies in biology, showing situations beyond ‘Itô versus Stratonovich’. Its internal consistency can be demonstrated via the zero mass limit of a generalized Klein–Kramers equation. Moreover, the connection to other integrations becomes evident: the obtained Fokker–Planck equation defines a new type of stoc...

متن کامل

Ito versus Stratonovich revisited

It is shown that a digital simulation of a noise induced phase transition using an algorithm consistent with the Ito stochastic calculus is in agreement with the predictions of that theory, whereas experiments with an analogue simulator yield measured results in agreement with the predictions of the Stratonovich theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2009

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.80.051113